Skip to main content

How to Implement Hints

Sometimes, it is difficult to compute a value within a circuit, and we can only compute it externally and then verify its correctness within the circuit. Common scenarios include calculating division or breaking a number down into the sum of its bits.

In gnark, this is achieved through hints, as detailed in Hints. Although our Rust API strives to simulate gnark's Go API, due to certain limitations of Rust, we currently do not have a function similar to gnark's api.NewHint. We plan to implement this in the future, so stay tuned.

Of course, there are currently some ways to achieve this external computation. We have implemented a method similar to that in circom, where you can perform arbitrary operations through a series of functions called UnconstrainedAPI, without generating constraints within the circuit. Its definition is as follows and can be called via expander_compiler::frontend::extra::UnconstrainedAPI.

pub trait UnconstrainedAPI<C: Config> {
fn unconstrained_identity(&mut self, x: impl ToVariableOrValue<C::CircuitField>) -> Variable;
fn unconstrained_add(&mut self, x: impl ToVariableOrValue<C::CircuitField>, y: impl ToVariableOrValue<C::CircuitField>) -> Variable;
fn unconstrained_mul(&mut self, x: impl ToVariableOrValue<C::CircuitField>, y: impl ToVariableOrValue<C::CircuitField>) -> Variable;
fn unconstrained_div(&mut self, x: impl ToVariableOrValue<C::CircuitField>, y: impl ToVariableOrValue<C::CircuitField>) -> Variable;
fn unconstrained_pow(&mut self, x: impl ToVariableOrValue<C::CircuitField>, y: impl ToVariableOrValue<C::CircuitField>) -> Variable;
fn unconstrained_int_div(&mut self, x: impl ToVariableOrValue<C::CircuitField>, y: impl ToVariableOrValue<C::CircuitField>) -> Variable;
fn unconstrained_mod(&mut self, x: impl ToVariableOrValue<C::CircuitField>, y: impl ToVariableOrValue<C::CircuitField>) -> Variable;
fn unconstrained_shift_l(&mut self, x: impl ToVariableOrValue<C::CircuitField>, y: impl ToVariableOrValue<C::CircuitField>) -> Variable;
fn unconstrained_shift_r(&mut self, x: impl ToVariableOrValue<C::CircuitField>, y: impl ToVariableOrValue<C::CircuitField>) -> Variable;
fn unconstrained_lesser_eq(&mut self, x: impl ToVariableOrValue<C::CircuitField>, y: impl ToVariableOrValue<C::CircuitField>) -> Variable;
fn unconstrained_greater_eq(&mut self, x: impl ToVariableOrValue<C::CircuitField>, y: impl ToVariableOrValue<C::CircuitField>) -> Variable;
fn unconstrained_lesser(&mut self, x: impl ToVariableOrValue<C::CircuitField>, y: impl ToVariableOrValue<C::CircuitField>) -> Variable;
fn unconstrained_greater(&mut self, x: impl ToVariableOrValue<C::CircuitField>, y: impl ToVariableOrValue<C::CircuitField>) -> Variable;
fn unconstrained_eq(&mut self, x: impl ToVariableOrValue<C::CircuitField>, y: impl ToVariableOrValue<C::CircuitField>) -> Variable;
fn unconstrained_not_eq(&mut self, x: impl ToVariableOrValue<C::CircuitField>, y: impl ToVariableOrValue<C::CircuitField>) -> Variable;
fn unconstrained_bool_or(&mut self, x: impl ToVariableOrValue<C::CircuitField>, y: impl ToVariableOrValue<C::CircuitField>) -> Variable;
fn unconstrained_bool_and(&mut self, x: impl ToVariableOrValue<C::CircuitField>, y: impl ToVariableOrValue<C::CircuitField>) -> Variable;
fn unconstrained_bit_or(&mut self, x: impl ToVariableOrValue<C::CircuitField>, y: impl ToVariableOrValue<C::CircuitField>) -> Variable;
fn unconstrained_bit_and(&mut self, x: impl ToVariableOrValue<C::CircuitField>, y: impl ToVariableOrValue<C::CircuitField>) -> Variable;
fn unconstrained_bit_xor(&mut self, x: impl ToVariableOrValue<C::CircuitField>, y: impl ToVariableOrValue<C::CircuitField>) -> Variable;
}

The semantics of these APIs are actually consistent with the operators in circom (Basic Operators). In circom, only addition and multiplication can generate constraints within the circuit (via <==), while other operators can only perform non-constraining assignments (via <--). These assignments have the same effect as the above APIs.

You can also find an example of using this API to decompose a number into bits here.